3.11.1 \(\int \sec ^8(c+d x) (a+a \sin (c+d x))^3 (A+B \sin (c+d x)) \, dx\) [1001]

3.11.1.1 Optimal result
3.11.1.2 Mathematica [A] (verified)
3.11.1.3 Rubi [A] (verified)
3.11.1.4 Maple [C] (verified)
3.11.1.5 Fricas [A] (verification not implemented)
3.11.1.6 Sympy [F(-1)]
3.11.1.7 Maxima [B] (verification not implemented)
3.11.1.8 Giac [B] (verification not implemented)
3.11.1.9 Mupad [B] (verification not implemented)

3.11.1.1 Optimal result

Integrand size = 31, antiderivative size = 115 \[ \int \sec ^8(c+d x) (a+a \sin (c+d x))^3 (A+B \sin (c+d x)) \, dx=\frac {(A+B) \sec ^7(c+d x) (a+a \sin (c+d x))^3}{7 d}+\frac {2 (4 A-3 B) \sec ^5(c+d x) \left (a^3+a^3 \sin (c+d x)\right )}{35 d}+\frac {3 a^3 (4 A-3 B) \tan (c+d x)}{35 d}+\frac {a^3 (4 A-3 B) \tan ^3(c+d x)}{35 d} \]

output
1/7*(A+B)*sec(d*x+c)^7*(a+a*sin(d*x+c))^3/d+2/35*(4*A-3*B)*sec(d*x+c)^5*(a 
^3+a^3*sin(d*x+c))/d+3/35*a^3*(4*A-3*B)*tan(d*x+c)/d+1/35*a^3*(4*A-3*B)*ta 
n(d*x+c)^3/d
 
3.11.1.2 Mathematica [A] (verified)

Time = 0.31 (sec) , antiderivative size = 135, normalized size of antiderivative = 1.17 \[ \int \sec ^8(c+d x) (a+a \sin (c+d x))^3 (A+B \sin (c+d x)) \, dx=\frac {a^3 (35 B+14 (4 A-3 B) \cos (2 (c+d x))+(-4 A+3 B) \cos (4 (c+d x))+56 A \sin (c+d x)-42 B \sin (c+d x)-24 A \sin (3 (c+d x))+18 B \sin (3 (c+d x)))}{140 d \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )^7 \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )} \]

input
Integrate[Sec[c + d*x]^8*(a + a*Sin[c + d*x])^3*(A + B*Sin[c + d*x]),x]
 
output
(a^3*(35*B + 14*(4*A - 3*B)*Cos[2*(c + d*x)] + (-4*A + 3*B)*Cos[4*(c + d*x 
)] + 56*A*Sin[c + d*x] - 42*B*Sin[c + d*x] - 24*A*Sin[3*(c + d*x)] + 18*B* 
Sin[3*(c + d*x)]))/(140*d*(Cos[(c + d*x)/2] - Sin[(c + d*x)/2])^7*(Cos[(c 
+ d*x)/2] + Sin[(c + d*x)/2]))
 
3.11.1.3 Rubi [A] (verified)

Time = 0.47 (sec) , antiderivative size = 104, normalized size of antiderivative = 0.90, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.226, Rules used = {3042, 3334, 3042, 3155, 3042, 4254, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^8(c+d x) (a \sin (c+d x)+a)^3 (A+B \sin (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a \sin (c+d x)+a)^3 (A+B \sin (c+d x))}{\cos (c+d x)^8}dx\)

\(\Big \downarrow \) 3334

\(\displaystyle \frac {1}{7} a (4 A-3 B) \int \sec ^6(c+d x) (\sin (c+d x) a+a)^2dx+\frac {(A+B) \sec ^7(c+d x) (a \sin (c+d x)+a)^3}{7 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} a (4 A-3 B) \int \frac {(\sin (c+d x) a+a)^2}{\cos (c+d x)^6}dx+\frac {(A+B) \sec ^7(c+d x) (a \sin (c+d x)+a)^3}{7 d}\)

\(\Big \downarrow \) 3155

\(\displaystyle \frac {1}{7} a (4 A-3 B) \left (\frac {3}{5} a^2 \int \sec ^4(c+d x)dx+\frac {2 \sec ^5(c+d x) \left (a^2 \sin (c+d x)+a^2\right )}{5 d}\right )+\frac {(A+B) \sec ^7(c+d x) (a \sin (c+d x)+a)^3}{7 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} a (4 A-3 B) \left (\frac {3}{5} a^2 \int \csc \left (c+d x+\frac {\pi }{2}\right )^4dx+\frac {2 \sec ^5(c+d x) \left (a^2 \sin (c+d x)+a^2\right )}{5 d}\right )+\frac {(A+B) \sec ^7(c+d x) (a \sin (c+d x)+a)^3}{7 d}\)

\(\Big \downarrow \) 4254

\(\displaystyle \frac {1}{7} a (4 A-3 B) \left (\frac {2 \sec ^5(c+d x) \left (a^2 \sin (c+d x)+a^2\right )}{5 d}-\frac {3 a^2 \int \left (\tan ^2(c+d x)+1\right )d(-\tan (c+d x))}{5 d}\right )+\frac {(A+B) \sec ^7(c+d x) (a \sin (c+d x)+a)^3}{7 d}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {1}{7} a (4 A-3 B) \left (\frac {2 \sec ^5(c+d x) \left (a^2 \sin (c+d x)+a^2\right )}{5 d}-\frac {3 a^2 \left (-\frac {1}{3} \tan ^3(c+d x)-\tan (c+d x)\right )}{5 d}\right )+\frac {(A+B) \sec ^7(c+d x) (a \sin (c+d x)+a)^3}{7 d}\)

input
Int[Sec[c + d*x]^8*(a + a*Sin[c + d*x])^3*(A + B*Sin[c + d*x]),x]
 
output
((A + B)*Sec[c + d*x]^7*(a + a*Sin[c + d*x])^3)/(7*d) + (a*(4*A - 3*B)*((2 
*Sec[c + d*x]^5*(a^2 + a^2*Sin[c + d*x]))/(5*d) - (3*a^2*(-Tan[c + d*x] - 
Tan[c + d*x]^3/3))/(5*d)))/7
 

3.11.1.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3155
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_), x_Symbol] :> Simp[-2*b*(g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + 
f*x])^(m - 1)/(f*g*(p + 1))), x] + Simp[b^2*((2*m + p - 1)/(g^2*(p + 1))) 
 Int[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^(m - 2), x], x] /; FreeQ 
[{a, b, e, f, g}, x] && EqQ[a^2 - b^2, 0] && GtQ[m, 1] && LtQ[p, -1] && Int 
egersQ[2*m, 2*p]
 

rule 3334
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-(b* 
c + a*d))*(g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^m/(a*f*g*(p + 1))) 
, x] + Simp[b*((a*d*m + b*c*(m + p + 1))/(a*g^2*(p + 1)))   Int[(g*Cos[e + 
f*x])^(p + 2)*(a + b*Sin[e + f*x])^(m - 1), x], x] /; FreeQ[{a, b, c, d, e, 
 f, g}, x] && EqQ[a^2 - b^2, 0] && GtQ[m, -1] && LtQ[p, -1]
 

rule 4254
Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Simp[-d^(-1)   Subst[Int[Exp 
andIntegrand[(1 + x^2)^(n/2 - 1), x], x], x, Cot[c + d*x]], x] /; FreeQ[{c, 
 d}, x] && IGtQ[n/2, 0]
 
3.11.1.4 Maple [C] (verified)

Result contains complex when optimal does not.

Time = 0.65 (sec) , antiderivative size = 133, normalized size of antiderivative = 1.16

method result size
risch \(\frac {4 i a^{3} \left (56 i A \,{\mathrm e}^{3 i \left (d x +c \right )}-42 i B \,{\mathrm e}^{3 i \left (d x +c \right )}+35 B \,{\mathrm e}^{4 i \left (d x +c \right )}-24 i A \,{\mathrm e}^{i \left (d x +c \right )}+56 A \,{\mathrm e}^{2 i \left (d x +c \right )}+18 i B \,{\mathrm e}^{i \left (d x +c \right )}-42 B \,{\mathrm e}^{2 i \left (d x +c \right )}-4 A +3 B \right )}{35 \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )^{7} d}\) \(133\)
parallelrisch \(-\frac {2 a^{3} \left (A \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-3 A +B \right ) \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (5 A -2 B \right ) \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 \left (-A +B \right ) \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\frac {\left (-A -8 B \right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{5}+\frac {\left (11 A +3 B \right ) \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{5}+\frac {\left (-43 A +6 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{35}+\frac {13 A}{35}-\frac {B}{35}\right )}{d \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{7}}\) \(167\)
derivativedivides \(\frac {A \,a^{3} \left (\frac {\sin ^{4}\left (d x +c \right )}{7 \cos \left (d x +c \right )^{7}}+\frac {3 \left (\sin ^{4}\left (d x +c \right )\right )}{35 \cos \left (d x +c \right )^{5}}+\frac {\sin ^{4}\left (d x +c \right )}{35 \cos \left (d x +c \right )^{3}}-\frac {\sin ^{4}\left (d x +c \right )}{35 \cos \left (d x +c \right )}-\frac {\left (2+\sin ^{2}\left (d x +c \right )\right ) \cos \left (d x +c \right )}{35}\right )+B \,a^{3} \left (\frac {\sin ^{5}\left (d x +c \right )}{7 \cos \left (d x +c \right )^{7}}+\frac {2 \left (\sin ^{5}\left (d x +c \right )\right )}{35 \cos \left (d x +c \right )^{5}}\right )+3 A \,a^{3} \left (\frac {\sin ^{3}\left (d x +c \right )}{7 \cos \left (d x +c \right )^{7}}+\frac {4 \left (\sin ^{3}\left (d x +c \right )\right )}{35 \cos \left (d x +c \right )^{5}}+\frac {8 \left (\sin ^{3}\left (d x +c \right )\right )}{105 \cos \left (d x +c \right )^{3}}\right )+3 B \,a^{3} \left (\frac {\sin ^{4}\left (d x +c \right )}{7 \cos \left (d x +c \right )^{7}}+\frac {3 \left (\sin ^{4}\left (d x +c \right )\right )}{35 \cos \left (d x +c \right )^{5}}+\frac {\sin ^{4}\left (d x +c \right )}{35 \cos \left (d x +c \right )^{3}}-\frac {\sin ^{4}\left (d x +c \right )}{35 \cos \left (d x +c \right )}-\frac {\left (2+\sin ^{2}\left (d x +c \right )\right ) \cos \left (d x +c \right )}{35}\right )+\frac {3 A \,a^{3}}{7 \cos \left (d x +c \right )^{7}}+3 B \,a^{3} \left (\frac {\sin ^{3}\left (d x +c \right )}{7 \cos \left (d x +c \right )^{7}}+\frac {4 \left (\sin ^{3}\left (d x +c \right )\right )}{35 \cos \left (d x +c \right )^{5}}+\frac {8 \left (\sin ^{3}\left (d x +c \right )\right )}{105 \cos \left (d x +c \right )^{3}}\right )-A \,a^{3} \left (-\frac {16}{35}-\frac {\left (\sec ^{6}\left (d x +c \right )\right )}{7}-\frac {6 \left (\sec ^{4}\left (d x +c \right )\right )}{35}-\frac {8 \left (\sec ^{2}\left (d x +c \right )\right )}{35}\right ) \tan \left (d x +c \right )+\frac {B \,a^{3}}{7 \cos \left (d x +c \right )^{7}}}{d}\) \(435\)
default \(\frac {A \,a^{3} \left (\frac {\sin ^{4}\left (d x +c \right )}{7 \cos \left (d x +c \right )^{7}}+\frac {3 \left (\sin ^{4}\left (d x +c \right )\right )}{35 \cos \left (d x +c \right )^{5}}+\frac {\sin ^{4}\left (d x +c \right )}{35 \cos \left (d x +c \right )^{3}}-\frac {\sin ^{4}\left (d x +c \right )}{35 \cos \left (d x +c \right )}-\frac {\left (2+\sin ^{2}\left (d x +c \right )\right ) \cos \left (d x +c \right )}{35}\right )+B \,a^{3} \left (\frac {\sin ^{5}\left (d x +c \right )}{7 \cos \left (d x +c \right )^{7}}+\frac {2 \left (\sin ^{5}\left (d x +c \right )\right )}{35 \cos \left (d x +c \right )^{5}}\right )+3 A \,a^{3} \left (\frac {\sin ^{3}\left (d x +c \right )}{7 \cos \left (d x +c \right )^{7}}+\frac {4 \left (\sin ^{3}\left (d x +c \right )\right )}{35 \cos \left (d x +c \right )^{5}}+\frac {8 \left (\sin ^{3}\left (d x +c \right )\right )}{105 \cos \left (d x +c \right )^{3}}\right )+3 B \,a^{3} \left (\frac {\sin ^{4}\left (d x +c \right )}{7 \cos \left (d x +c \right )^{7}}+\frac {3 \left (\sin ^{4}\left (d x +c \right )\right )}{35 \cos \left (d x +c \right )^{5}}+\frac {\sin ^{4}\left (d x +c \right )}{35 \cos \left (d x +c \right )^{3}}-\frac {\sin ^{4}\left (d x +c \right )}{35 \cos \left (d x +c \right )}-\frac {\left (2+\sin ^{2}\left (d x +c \right )\right ) \cos \left (d x +c \right )}{35}\right )+\frac {3 A \,a^{3}}{7 \cos \left (d x +c \right )^{7}}+3 B \,a^{3} \left (\frac {\sin ^{3}\left (d x +c \right )}{7 \cos \left (d x +c \right )^{7}}+\frac {4 \left (\sin ^{3}\left (d x +c \right )\right )}{35 \cos \left (d x +c \right )^{5}}+\frac {8 \left (\sin ^{3}\left (d x +c \right )\right )}{105 \cos \left (d x +c \right )^{3}}\right )-A \,a^{3} \left (-\frac {16}{35}-\frac {\left (\sec ^{6}\left (d x +c \right )\right )}{7}-\frac {6 \left (\sec ^{4}\left (d x +c \right )\right )}{35}-\frac {8 \left (\sec ^{2}\left (d x +c \right )\right )}{35}\right ) \tan \left (d x +c \right )+\frac {B \,a^{3}}{7 \cos \left (d x +c \right )^{7}}}{d}\) \(435\)

input
int(sec(d*x+c)^8*(a+a*sin(d*x+c))^3*(A+B*sin(d*x+c)),x,method=_RETURNVERBO 
SE)
 
output
4/35*I*a^3*(56*I*A*exp(3*I*(d*x+c))-42*I*B*exp(3*I*(d*x+c))+35*B*exp(4*I*( 
d*x+c))-24*I*A*exp(I*(d*x+c))+56*A*exp(2*I*(d*x+c))+18*I*B*exp(I*(d*x+c))- 
42*B*exp(2*I*(d*x+c))-4*A+3*B)/(exp(I*(d*x+c))+I)/(exp(I*(d*x+c))-I)^7/d
 
3.11.1.5 Fricas [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 146, normalized size of antiderivative = 1.27 \[ \int \sec ^8(c+d x) (a+a \sin (c+d x))^3 (A+B \sin (c+d x)) \, dx=\frac {2 \, {\left (4 \, A - 3 \, B\right )} a^{3} \cos \left (d x + c\right )^{4} - 9 \, {\left (4 \, A - 3 \, B\right )} a^{3} \cos \left (d x + c\right )^{2} + 5 \, {\left (3 \, A - 4 \, B\right )} a^{3} + {\left (6 \, {\left (4 \, A - 3 \, B\right )} a^{3} \cos \left (d x + c\right )^{2} - 5 \, {\left (4 \, A - 3 \, B\right )} a^{3}\right )} \sin \left (d x + c\right )}{35 \, {\left (3 \, d \cos \left (d x + c\right )^{3} - 4 \, d \cos \left (d x + c\right ) - {\left (d \cos \left (d x + c\right )^{3} - 4 \, d \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )\right )}} \]

input
integrate(sec(d*x+c)^8*(a+a*sin(d*x+c))^3*(A+B*sin(d*x+c)),x, algorithm="f 
ricas")
 
output
1/35*(2*(4*A - 3*B)*a^3*cos(d*x + c)^4 - 9*(4*A - 3*B)*a^3*cos(d*x + c)^2 
+ 5*(3*A - 4*B)*a^3 + (6*(4*A - 3*B)*a^3*cos(d*x + c)^2 - 5*(4*A - 3*B)*a^ 
3)*sin(d*x + c))/(3*d*cos(d*x + c)^3 - 4*d*cos(d*x + c) - (d*cos(d*x + c)^ 
3 - 4*d*cos(d*x + c))*sin(d*x + c))
 
3.11.1.6 Sympy [F(-1)]

Timed out. \[ \int \sec ^8(c+d x) (a+a \sin (c+d x))^3 (A+B \sin (c+d x)) \, dx=\text {Timed out} \]

input
integrate(sec(d*x+c)**8*(a+a*sin(d*x+c))**3*(A+B*sin(d*x+c)),x)
 
output
Timed out
 
3.11.1.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 228 vs. \(2 (107) = 214\).

Time = 0.21 (sec) , antiderivative size = 228, normalized size of antiderivative = 1.98 \[ \int \sec ^8(c+d x) (a+a \sin (c+d x))^3 (A+B \sin (c+d x)) \, dx=\frac {{\left (15 \, \tan \left (d x + c\right )^{7} + 42 \, \tan \left (d x + c\right )^{5} + 35 \, \tan \left (d x + c\right )^{3}\right )} A a^{3} + {\left (5 \, \tan \left (d x + c\right )^{7} + 21 \, \tan \left (d x + c\right )^{5} + 35 \, \tan \left (d x + c\right )^{3} + 35 \, \tan \left (d x + c\right )\right )} A a^{3} + {\left (15 \, \tan \left (d x + c\right )^{7} + 42 \, \tan \left (d x + c\right )^{5} + 35 \, \tan \left (d x + c\right )^{3}\right )} B a^{3} + {\left (5 \, \tan \left (d x + c\right )^{7} + 7 \, \tan \left (d x + c\right )^{5}\right )} B a^{3} - \frac {{\left (7 \, \cos \left (d x + c\right )^{2} - 5\right )} A a^{3}}{\cos \left (d x + c\right )^{7}} - \frac {3 \, {\left (7 \, \cos \left (d x + c\right )^{2} - 5\right )} B a^{3}}{\cos \left (d x + c\right )^{7}} + \frac {15 \, A a^{3}}{\cos \left (d x + c\right )^{7}} + \frac {5 \, B a^{3}}{\cos \left (d x + c\right )^{7}}}{35 \, d} \]

input
integrate(sec(d*x+c)^8*(a+a*sin(d*x+c))^3*(A+B*sin(d*x+c)),x, algorithm="m 
axima")
 
output
1/35*((15*tan(d*x + c)^7 + 42*tan(d*x + c)^5 + 35*tan(d*x + c)^3)*A*a^3 + 
(5*tan(d*x + c)^7 + 21*tan(d*x + c)^5 + 35*tan(d*x + c)^3 + 35*tan(d*x + c 
))*A*a^3 + (15*tan(d*x + c)^7 + 42*tan(d*x + c)^5 + 35*tan(d*x + c)^3)*B*a 
^3 + (5*tan(d*x + c)^7 + 7*tan(d*x + c)^5)*B*a^3 - (7*cos(d*x + c)^2 - 5)* 
A*a^3/cos(d*x + c)^7 - 3*(7*cos(d*x + c)^2 - 5)*B*a^3/cos(d*x + c)^7 + 15* 
A*a^3/cos(d*x + c)^7 + 5*B*a^3/cos(d*x + c)^7)/d
 
3.11.1.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 260 vs. \(2 (107) = 214\).

Time = 0.36 (sec) , antiderivative size = 260, normalized size of antiderivative = 2.26 \[ \int \sec ^8(c+d x) (a+a \sin (c+d x))^3 (A+B \sin (c+d x)) \, dx=-\frac {\frac {35 \, {\left (A a^{3} - B a^{3}\right )}}{\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1} + \frac {525 \, A a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{6} + 35 \, B a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{6} - 1960 \, A a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 280 \, B a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 4025 \, A a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 665 \, B a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 4480 \, A a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 1120 \, B a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 3143 \, A a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 791 \, B a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1176 \, A a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 392 \, B a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 243 \, A a^{3} - 51 \, B a^{3}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1\right )}^{7}}}{280 \, d} \]

input
integrate(sec(d*x+c)^8*(a+a*sin(d*x+c))^3*(A+B*sin(d*x+c)),x, algorithm="g 
iac")
 
output
-1/280*(35*(A*a^3 - B*a^3)/(tan(1/2*d*x + 1/2*c) + 1) + (525*A*a^3*tan(1/2 
*d*x + 1/2*c)^6 + 35*B*a^3*tan(1/2*d*x + 1/2*c)^6 - 1960*A*a^3*tan(1/2*d*x 
 + 1/2*c)^5 + 280*B*a^3*tan(1/2*d*x + 1/2*c)^5 + 4025*A*a^3*tan(1/2*d*x + 
1/2*c)^4 - 665*B*a^3*tan(1/2*d*x + 1/2*c)^4 - 4480*A*a^3*tan(1/2*d*x + 1/2 
*c)^3 + 1120*B*a^3*tan(1/2*d*x + 1/2*c)^3 + 3143*A*a^3*tan(1/2*d*x + 1/2*c 
)^2 - 791*B*a^3*tan(1/2*d*x + 1/2*c)^2 - 1176*A*a^3*tan(1/2*d*x + 1/2*c) + 
 392*B*a^3*tan(1/2*d*x + 1/2*c) + 243*A*a^3 - 51*B*a^3)/(tan(1/2*d*x + 1/2 
*c) - 1)^7)/d
 
3.11.1.9 Mupad [B] (verification not implemented)

Time = 11.60 (sec) , antiderivative size = 213, normalized size of antiderivative = 1.85 \[ \int \sec ^8(c+d x) (a+a \sin (c+d x))^3 (A+B \sin (c+d x)) \, dx=-\frac {a^3\,\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (\frac {35\,A\,\cos \left (\frac {5\,c}{2}+\frac {5\,d\,x}{2}\right )}{4}-\frac {91\,A\,\cos \left (\frac {3\,c}{2}+\frac {3\,d\,x}{2}\right )}{4}+A\,\cos \left (\frac {7\,c}{2}+\frac {7\,d\,x}{2}\right )-\frac {35\,B\,\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{4}+\frac {21\,B\,\cos \left (\frac {3\,c}{2}+\frac {3\,d\,x}{2}\right )}{2}-\frac {3\,B\,\cos \left (\frac {7\,c}{2}+\frac {7\,d\,x}{2}\right )}{4}-\frac {233\,A\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{8}+\frac {121\,A\,\sin \left (\frac {3\,c}{2}+\frac {3\,d\,x}{2}\right )}{8}+\frac {61\,A\,\sin \left (\frac {5\,c}{2}+\frac {5\,d\,x}{2}\right )}{8}-\frac {13\,A\,\sin \left (\frac {7\,c}{2}+\frac {7\,d\,x}{2}\right )}{8}+\frac {61\,B\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{8}+\frac {23\,B\,\sin \left (\frac {3\,c}{2}+\frac {3\,d\,x}{2}\right )}{8}-\frac {37\,B\,\sin \left (\frac {5\,c}{2}+\frac {5\,d\,x}{2}\right )}{8}+\frac {B\,\sin \left (\frac {7\,c}{2}+\frac {7\,d\,x}{2}\right )}{8}\right )}{280\,d\,\cos \left (\frac {c}{2}-\frac {\pi }{4}+\frac {d\,x}{2}\right )\,{\cos \left (\frac {c}{2}+\frac {\pi }{4}+\frac {d\,x}{2}\right )}^7} \]

input
int(((A + B*sin(c + d*x))*(a + a*sin(c + d*x))^3)/cos(c + d*x)^8,x)
 
output
-(a^3*cos(c/2 + (d*x)/2)*((35*A*cos((5*c)/2 + (5*d*x)/2))/4 - (91*A*cos((3 
*c)/2 + (3*d*x)/2))/4 + A*cos((7*c)/2 + (7*d*x)/2) - (35*B*cos(c/2 + (d*x) 
/2))/4 + (21*B*cos((3*c)/2 + (3*d*x)/2))/2 - (3*B*cos((7*c)/2 + (7*d*x)/2) 
)/4 - (233*A*sin(c/2 + (d*x)/2))/8 + (121*A*sin((3*c)/2 + (3*d*x)/2))/8 + 
(61*A*sin((5*c)/2 + (5*d*x)/2))/8 - (13*A*sin((7*c)/2 + (7*d*x)/2))/8 + (6 
1*B*sin(c/2 + (d*x)/2))/8 + (23*B*sin((3*c)/2 + (3*d*x)/2))/8 - (37*B*sin( 
(5*c)/2 + (5*d*x)/2))/8 + (B*sin((7*c)/2 + (7*d*x)/2))/8))/(280*d*cos(c/2 
- pi/4 + (d*x)/2)*cos(c/2 + pi/4 + (d*x)/2)^7)